skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Mark D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new concept of ligand ambiphilicity that relies on the redox behavior of the indirectly coordinated boron cluster scaffold instead of the direct involvement of a single center in a ligand is introduced. 
    more » « less
    Free, publicly-accessible full text available July 30, 2026
  2. Achieving tunable electrical conductivity in organic materials is a key challenge for the development of next-generation semiconductors. This study demonstrates a novel approach using triphenylamine (TPA) bis-urea macrocycles as supramolecular hosts for guest-induced modulation of charge-transfer (CT) properties. By encapsulating guests with varying reduction potentials, including 2,5-dichloro-1,4-benzoquinone (ClBQ), 2,1,3-benzothiadiazole (BTD), and malononitrile (MN), we observed significant changes in the electrical conductivity. Crystals of the 1(ClBQ)0.31 complex exhibited an electrical conductivity of ∼2.08 × 10–5 S cm–1, a 10,000-fold enhancement compared to the pristine host. This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. 1(MN)0.39 and 1(BTD)0.5 demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. Lower ratios of guest inclusion decreased the electrical conductivity by 10-fold in 1(ClBQ)0.18, while 1(MN)0.25 and 1(BTD)0.41 were nonconductive (10–9 S cm–1). This work highlights the potential of metal-free, porous organic systems as tunable semiconductors, offering a pathway to innovative applications in organic electronics. 
    more » « less
    Free, publicly-accessible full text available August 25, 2026
  3. Free, publicly-accessible full text available May 1, 2026
  4. Photochromic radionuclide-based “claw machines” characterizedviaa combination of isothermal titration calorimetry and spectroscopic analysis unlock a pathway for on demand radionuclide capture and release. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026
  5. Free, publicly-accessible full text available March 11, 2026
  6. Free, publicly-accessible full text available November 19, 2025
  7. The structures and photoinduced radical (PIR) percentages of two crystalline solvates of unsubstituted triphenylamine bis-urea macrocycles are compared. Upon activation, both afford similar structures with higher PIR %. 
    more » « less
  8. Free, publicly-accessible full text available November 20, 2025